

ISSN: 2810 – 8493

https://revista.ectperu.org.pe/index.php/ect/index

A Card Game Proposal for Approaching Regular
Languages

1st Valentina Narvaez-Teran
Computer Sciences Department

Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias
Monterrey, Mexico

valentina.narvaez@tec.mx
https://orcid.org/0000-0003-2071-9568

2nd Lorena Martinez Elizalde
Computer Sciences Department

Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias
Monterrey, Mexico
lorenamtze@tec.mx

https://orcid.org/0009-0006-4024-4271

Abstract—Formal languages are a relevant subject in computer

science programs, they are a fundamental cornerstone for the
development of programming languages, pattern recognition in
texts, and they are deeply related to the theory of computation,
including problems and their complexity. This work proposes
a turn-based competitive card game that models the basics of
regular languages, also known as type-3 languages. Through this
game’s mechanics, we aim to model relevant formal concepts,
such as languages, symbols, alphabets, words, operators and word
matching with regular expressions. We present the rules of the
game and the design reasoning behind them, explaining how
this rules relate to the abilities students require to work with
regular languages. We report some early feed back received from
computer science students.

Index Terms—Gamification, educational game design, regular
languages

I. INTRODUCTION

Gamification in education has been proposed as a strategy to

motivate students, increase engagement and facilitate the un-
derstanding of abstract concepts [1]. Translating such concepts
into game mechanics can help students approach a subject
that they may perceive as too complex or too unfamiliar from
a new perspective [2]. In today’s college classrooms, where
students may struggle to overcome learning issues [3], such as
decreasing attention spans, easy access to distracting devices,
difficulty to connect with traditional learning methodologies,
and plain old lack of interest, games can be a valuable
alternative tool for professors. Learning via games can also
help remove communication barriers, such as student’s fear
of being judged if they admit they do not fully understand a
subject [4].

This work presents preliminary work on the development
of a card game aiming to teach the operators involved in
regular languages, and the regular expressions that describe
them. These subjects are a relevant part of college programs for
computer sciences majors and other related disciplines. While
the game was developed in the context of higher education, we
consider it is simple enough for younger players, and requires
no prior knowledge.

Regular languages are the starting point to approach Chom-

sky’s classic hierarchy [5]–[7], as its least complex member.

https://revista.ectperu.org.pe/index.php/ect/index
mailto:valentina.narvaez@tec.mx
mailto:lorenamtze@tec.mx

ISSN: 2810 – 8493

https://revista.ectperu.org.pe/index.php/ect/index

A good grasp of formal languages is vital for pivoting
later to related subjects, such as the development of pro-
gramming languages [8] and automata theory [9]. Therefore,
our game can be potentially useful in computing theory and
programming languages courses. Regular languages include
sequences of symbols matching certain patterns. This
symbols must belong to a given alphabet, and the patterns
are based on simple operations over them: concatenation,
repetition and alternative.

The rest of this paper is organized as follows. Section II
introduces regular languages and their terminology. Section
III describes the rules involved in the game and how they
model the basic concepts of regular languages. Student’s
initial feedback and preliminary results are discussed in
section IV. Finally, section V summarizes conclusions and
further work.

II. FORMAL DEFINITIONS AND OPERATORS

This section defines the concepts related to regular lan-
guages that we attempted to capture in the game’s mechanics.

• Alphabet. An alphabet Σ is a finite non-empty set
of symbols.

• Words. A word ω ∈ Σ is a sequence of symbols
from the alphabet, and its length is denoted as |ω|.

• Empty word. The empty word ϵ has length zero.
• Power operator. The power operator can be applied to

any alphabet to describe words of specific length. For
ex- ample, Σ3 is the set of all words of length equal to
three, formed with symbols from Σ. This operator
can also be applied to symbols, either single or grouped
within parenthesis. For example: a5 results in five
repetitions of the a symbol, i.e., aaaaa. Meanwhile,
(ab)2 would result in two repetitions of the ab group,
i.e., abab.

• Kleene’s closure. Also known as Kleene star. It is
the union Σ∗ = Σ0 ∪ Σ1 ∪ Σ2 ∪ · · · ∪ Σn, with 0
≤ n. It represents all possible words of any length
over the symbols of alphabet Σ. Notice Σ∗ includes
the empty word ϵ.

• Positive closure. Also called Kleene plus. It is the union
Σ∗ = Σ1 ∪ Σ2 ∪ · · · ∪ Σn, with 1 ≤ n. It represents
all possible words of length equal or larger than one,
over

https://revista.ectperu.org.pe/index.php/ect/index

ISSN: 2810 – 8493

https://revista.ectperu.org.pe/index.php/ect/index

the symbols of alphabet Σ. Since 1 ≤ n, Σ+ does not
include the empty word ϵ.

• Concatenation. It is the sequential combination of sev-
eral symbols and/or words. For example ab is the con-
catenation of the symbol a followed by the symbol b. The
concatenation of a word ω with the empty word ϵ is the
word itself: ωϵ = ω.

• Alternative. It is denoted by the | (pipe) symbol. For
example, b|c describes one occurrence of b or c (but no
both together). A patter such as a(b|c) matches the words
ab and ac.

• Language: A language is defined as L ⊆ Σ∗, where Σ∗,
also known as Kleene’s closure, represents all possible
sequences of any length over the symbols of alphabet Σ.

• Regular languages and regular expressions. A regular
expression is a description of the pattern followed by
the words of a regular language. It recognizes all words
matching the pattern and it rejects all others. Regular
expressions are built from symbols of the alphabet com-
bined with operators, and parenthesis to group them if
required. For example, the expression a∗b5|c+ describes
all words that:

– begin with zero or more occurrences of a, followed
by either

– five occurrences of b, or
– one or more occurrences of c.

Some of these words are abbbbb, ac, accc, aaaaac, and
simply c. The later is the shorter word that matches the
expression.
The patterns defined by regular expressions are relatively
simple, but powerful enough to represent the lexicon
of programming languages, such as the conventions for
naming variables, different types of numbers (integers,
floats, with or without sign), etc. They are also useful to
validate if user input fits a desired pattern: a valid email,
or a strong password.

III. THE CARD GAME AND ITS RULES

The game aims to model the concepts and operations
described in Section II, (excluding parenthesis) and to trigger
the pattern recognition process required to verify matches.
However, it does not employ characters as symbols, nor the
explicit notion of expression. Instead, it focuses on capturing
cats by satisfying their meal requests considering several types
of food, quantity and order. Food types represent alphabet
symbols, with meal requests as a metaphor for regular expres-
sions. The game was created for four players. Its development
is still at the prototype stage, but it is already playable.

A. Set of cards and tokens
A full set of cards includes the four subsets described below.
• Cats. There are ten cat cards. A cat is worth a set amount

of points, specified in the left corner of the card.
• Food tokens. 24 cards. There are four types of food: fish

(f), chicken (c), milk (m) and dry feed (d), with eighth

Fig. 1. Types of cards: cats, food, food tokens (small and square) and operator
tokens.

copies per type. Together with the operator tokens, these
are used to generate randomized meal requests.

• Operator tokens. 13 cards: four copies of the Kleene
star operator (∗), four copies of the Kleene plus operator
(+), three copies of the alternative operator (|), 3 copies
for power two (2) and 2 tokens for power three (3).

• Food cards. 80 cards, with 20 copies per food type. This
deck is used by the players to create matching sequences
for a cat’s meal request.

In order to quickly develop an initial prototype, all the
images for the cards were produced using generative artificial
intelligence via Microsoft’s Copilot.

B. Game objective and rules

The game’s objective is to accumulate the most points by
gathering as many cats as possible. Cats are won over if their
meal request is satisfied by matching the type of food, order
and quantity. A game lasts ten rounds, one per cat. Players
start by separately shuffling every subset of cards and tokens.

• Cats and the meal requests. A round begins by drafting
and revealing a cat. The cat and its meal request are
placed at the center of the table, for all players to see.
The meal request is random, chosen by drafting 4 food
tokens and 4 operator tokens. The chosen tokens are
placed facing down, in alternate order beginning with a
food token, then an operator token. After placing them,
they are revealed and grouped into ”courses”. Since there
are no parenthesis in the card set, operators only affect
the food token immediately before. The only exception
to this is the alternative operator.
Figure 2 shows an example with three courses. The
alternative operator in between the first and second food
tokens affects both. The meal request is interpreted as:
one serving of chicken or one or more servings of dry
feed for the first course, followed by two servings of milk
for the second course, and finally zero or more servings
of fish for the last course. The underlying language is
described by the regular expression c|d+m2f∗.

https://revista.ectperu.org.pe/index.php/ect/index

ISSN: 2810 – 8493

https://revista.ectperu.org.pe/index.php/ect/index

It is possible that an alternative operator appears at the
end of a randomly generated request, with no food token
after it. In that case, the absent food token represents the
empty word ϵ.

• Card dealing Every player gets six cards from the food
deck. Players must not reveal their hands.

• Plating phase In turns, players add food from their hand
to the area in the table in front of themselves (their
”plate”). Cards added to the plate never go back to a
player’s hand. In order to add food to the plate, the card
must match the type of food, one course at a time, while
the quantity can be achieved incrementally along several
turns. Following the example in Figure 2, a player must
begging by plating chicken or dry feed, but no both. A
player can not begin by plating milk nor fish, because
these do not match the first course. A player can not plate
chicken and milk at the same time, since these belong
to different courses. If a player does not have the cards
required, they must pass the turn.
The plating mechanic tries to model how regular lan-
guages function. Sequences of symbols must follow
patterns, where the order, combination and number of
repetitions matters. In the previous example a matching
word for expression c|d+m2f∗ must begin with either
one c, or at least one d. Therefore, a matching word can
not begin with just mm.

• Stealing phase After every player had one turn in plating
phase, they move on to stealing phase. In their turn,
a player can choose to sacrifice one pair of any type
from their hand to steal one card from another player’s
plate. Sacrificed cards are discarded. The stolen card must
be a valid immediate addition to the player’s plate. For
example, lets say player-A placed one serving of chicken
in the plating phase. They can not steal another serving of
chicken from another player, since the request only asked
for one serving, having two does not match. Player-A can
not steal dry food either, because they already choose the
chicken alternative.
A player can steal up to three times in their turn. Stealing
repeatedly from the same player is allowed. Stolen cards
can belong to different courses. The purpose of stealing
is to encourage students to think about how make an
existing sequence longer by adding valid symbols.

• Next phase and turn rotation After stealing phase, a
new plating phase begins. The first turn goes to the player
at the left of the one who started the last time. Players
add cards to their current hands until completing six.

• Destroyed plates A player’s plate can be left empty, or
with an invalid sequence after the stealing phase ends. If
the plate is empty, during the next plating phase the player
must start from the first course. If the player was left with
something invalid, lets say only a serving of milk, they
must focus on rebuilding, starting with the first course,
then the next one. If the player has cards for chicken and
milk in their hand, they can plate them at the same time.
But they can not plate just milk, nor fish.

Fig. 2. Steps for drafting and revealing a meal request.

• Full plate When a player finishes a plating that fully
satisfies the request, they have the chance to win over
the current cat. They must announce the plate is ready, in
their turn (either in plating or stealing phase). Otherwise,
they miss the chance until their next turn.

• Contested plates and ties After a player announced they
have a ready plate, other players can contest it, by achiev-
ing a fuller ready plate before the end of the stealing
phase in the current iteration. A fuller plate means a
longer sequence of symbols, i.e., a longer matching word.
When a player announces their plate is ready, they loose
their turn for the stealing phase and the plate is protected,
preventing other players from stealing from it. At the end
of the stealing phase, the player with the fullest ready
plate wins over the cat. However, if players are tied, the
game continues as usual for a new iteration of plating
and stealing. Tied players recover the ability to stealing
and being stolen from.

• Winning Players are encouraged to verify if announced
ready plates actually match the meal request. If all players
agree, the current cat is awarded and the game continues
with a new cat and meal request after reshuffling cards.

IV. EARLY TESTING AND STUDENT FEEDBACK
A prototype was tested with fourth semester college students

who were already aware of regular languages, operators and
word verification. While more testing is definitely required,
we present here some preliminary results and feedback from
27 students who voluntarily answered a poll. The poll asked
students if they agree with the following statements, with
answers in ascending scale of 1 to 5. Statements 1 to 5 are
about the game and its rules, statements 6 to 11 inquire about
student’s ability to understand the operators and work with
expressions.

1) The game was fun.
2) Rules were easy to understand.

https://revista.ectperu.org.pe/index.php/ect/index

ISSN: 2810 – 8493

https://revista.ectperu.org.pe/index.php/ect/index

Fig. 3. Percentage of students answers about game mechanics.

3) Food types variety is adequate.
4) It was hard to get a hand with useful cards.
5) It was too easy to get pairs for stealing.
6) I am able to interpret Kleene star and Kleene plus.
7) I am able to interpret the power operator.
8) I am able to interpret the alternative operator.
9) I am able to able to verify a given sequence.

10) I am able to able to create matching sequence.
11) I am able to able to create expressions.
The answers were self-reported perceptions, and we have

not yet evaluated the potential impact on academic perfor-
mance after experiencing the game, but student feedback was
overall positive. Most students considered the game was fun,
ranking it 4 or above. Most of them also agreed that the rules
and types of food cards were adequate. Getting a good hand
with useful cards was not considered too hard, while getting
pairs to use when stealing was considered a little too easy.

Over half of the students self-reported they understood the
operators, specially the power operator, as seen in figure 4.
They also ranked high their self-perceived ability to verify
given sequences and expressions. This can be observed in
figure 5 The accuracy of this self-reported abilities has yet
to be evaluated.

Anecdotal observations. While playing the game, students
became strategic, specially during the stealing phase. They
quickly identified the rival player closer to winning, and they
were able to form fast evolving alliances to steal exclusively
from them. Students argued among themselves, explaining
to each other why certain plating choices were or were not
valid. Moreover, some students who rarely participate in class
became more vocal, asking questions to their peers as well as
to the professor. We consider this last point is particularly
valuable, easing communication and allowing professors to
identify issues students may have to grasp specific concepts.

V. CONCLUSIONS AND FURTHER WORK

This worked presented an early prototype of a card game
aiming to model regular languages concepts in the context of
computer sciences. While so far student feedback has been
positive, the impact of the game on academic performance
has yet to be quantified. There are also several areas of
improvement for the game. The most important one is adding
mechanics for the inclusion of parenthesis, since subsequences

Fig. 4. Percentage of students answers about operators.

Fig. 5. Percentage of students answers about operators.

of symbols grouped within parenthesis are a vital part of regu-
lar expressions. It would be interesting to consider alternatives
to add and remove parenthesis in a meal request. More testing
with familiarized students and varying group size is also
required to ensure the game is adequately balanced. Finally,
other objectives are replacing the AI generated images by
custom made art designs, making the game publicly available
via download, and exploring the possibility of expanding it to
cover more complex types of languages.

VI. ACKNOWLEDGMENT
We would like to thank the REDINDVJ for the publication

opportunity, as well as the Computer Science Department
at Tec de Monterrey for allowing us to try innovations in
education through gamification.

REFERENCES
[1] A. Manzano-Leo´n, P. Camacho-Lazarraga, M. A. Guerrero, L. Guerrero-

Puerta, J. M. Aguilar-Parra, R. Trigueros, and A. Alias, “Between level
up and game over: A systematic literature review of gamification in
education,” Sustainability, vol. 13, no. 4, 2021. [Online]. Available:
https://www.mdpi.com/2071-1050/13/4/2247

[2] C. Kazimoglu, “Enhancing confidence in using computational thinking
skills via playing a serious game: A case study to increase motivation
in learning computer programming,” IEEE Access, vol. 8, pp. 221 831–
221 851, 2020.

[3] J. Sinclair, M. Butler, M. Morgan, and S. Kalvala, “Measures of
student engagement in computer science,” in Proceedings of the 2015
ACM Conference on Innovation and Technology in Computer Science
Education, ser. ITiCSE ’15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 242–247. [Online]. Available:
https://doi.org/10.1145/2729094.2742586

[4] A. I. Wang and R. Tahir, “The effect of using
kahoot! for learning – a literature review,” Computers
Education, vol. 149, p. 103818, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0360131520300208

[5] N. Chomsky, “Three models for the description of language,” IRE
Transactions on Information Theory, vol. 2, no. 3, pp. 113–124, 1956.

[6] ——, “On certain formal properties of grammars,” Information and
Control, vol. 2, no. 2, pp. 137–167, 1959.

[7] A. V. Aho and J. D. Ullman, “The theory of languages,” Mathematical
systems theory, vol. 2, pp. 97–125, 1968.

https://revista.ectperu.org.pe/index.php/ect/index
http://www.mdpi.com/2071-1050/13/4/2247
http://www.sciencedirect.com/science/article/pii/S0360131520300208

ISSN: 2810 – 8493

https://revista.ectperu.org.pe/index.php/ect/index

[8] M. Gabbrielli and S. Martini, How to Describe a Programming Language.
London: Springer London, 2010, pp. 27–55.

[9] ——, Abstract Machines. London: Springer London, 2010, pp. 1–25.

https://revista.ectperu.org.pe/index.php/ect/index

