Revisión Sistemática de Técnicas De Inteligencia Artificial para Detección de Cáncer Pulmonar en Imágenes Médicas

DOI. 10.54798/AHZC2711

Autores/as

Palabras clave:

Cáncer de pulmón, deep learning, detección temprana, inteligencia artificial, redes neuronales convolucionales.

Resumen

El cáncer de pulmón es la principal causa de muerte por cáncer en el mundo, con 2.5 millones de fallecimientos y 1.8 millones de nuevos casos en 2022, estas cifras reflejan una realidad preocupante. Las técnicas de inteligencia artificial (IA), en particular el deep learning, han mostrado gran potencial para detectar el cáncer. Esta revisión sistemática analiza las técnicas de IA aplicadas en la detección y diagnóstico de cáncer de pulmón a partir de imágenes médicas, así como los datasets empleados, las métricas de rendimiento y los métodos de preprocesamiento de imágenes. El objetivo es esclarecer el panorama a los investigadores que estén interesados en el desarrollo de herramientas de detección de cáncer de pulmón mediante IA e imágenes médicas, resaltando las principales tecnologías que se están utilizando actualmente, así como sus limitaciones. Para la revisión se ha seguido la metodología proporcionada por Kitchenham & Charters. Los artículos considerados provienen de bases de datos indexadas como Scopus, Web of Science y PubMed, publicados entre 2019 y 2023. Los resultados muestran como tecnología principal a las redes neuronales convolucionales, las cuales se utilizaron en diferentes arquitecturas, algunas de ellas se combinaron con modelos de aprendizaje automático. Los datasets más usados fueron los orientados a la detección por nódulo. La revisión concluye que la integración de modelos híbridos basados en redes neuronales convolucionales son una opción prometedora para mejorar la precisión de la detección temprana del cáncer de pulmón.

Biografía del autor/a

Rolando Tueros , Universidad Nacional Mayor de San Marcos

Estudiante de Ingenieria de software de la Universidad Nacional Mayor de San Marcos

Carlos Cánepa, Universidad Nacional Mayor de San Marcos

Estudiante de Ingenieria de software de la Universidad Nacional Mayor de San Marcos

Carmen Muñoz, Universidad Nacional Mayor de San Marcos

Estudiante de Ingenieria de Software de la Universidad Nacional Mayor de San Marcos

Yudi Guzman, Universidad Nacional Mayor de San Marcos

Docente en la Universidad Nacional Mayor de San Marcos

Citas

Al-Ameer, A. A. A., Hussien, G. A., & Ameri, H. A. A. (2022). Lung cancer detection using image processing and deep learning. Indonesian Journal of Electrical Engineering and Computer Science, 28(2), Article 2. https://doi.org/10.11591/ijeecs.v28.i2.pp987-993

Alamgeer, M., Alruwais, N., Alshahrani, H. M., Mohamed, A., & Assiri, M. (2023). Dung Beetle Optimization with Deep Feature Fusion Model for Lung Cancer Detection and Classification. Cancers, 15(15), Article 15. https://doi.org/10.3390/cancers15153982

Alsheikhy, A. A., Said, Y., Shawly, T., Alzahrani, A. K., & Lahza, H. (2023). A CAD System for Lung Cancer Detection Using Hybrid Deep Learning Techniques. Diagnostics, 13(6), Article 6. https://doi.org/10.3390/diagnostics13061174

Al-Yasriy, H. F., AL-Husieny, M. S., Mohsen, F. Y., Khalil, E. A., & Hassan, Z. S. (2020). Diagnosis of Lung Cancer Based on CT Scans Using CNN. IOP Conference Series: Materials Science and Engineering, 928(2), 022035. https://doi.org/10.1088/1757-899X/928/2/022035

Asuntha, A., & Srinivasan, A. (2020). Deep learning for lung Cancer detection and classification. Multimedia Tools and Applications, 79(11), 7731-7762. https://doi.org/10.1007/s11042-019-08394-3

Barrett, J., & Viana, T. (2022). EMM-LC Fusion: Enhanced Multimodal Fusion for Lung Cancer Classification. AI, 3(3), Article 3. https://doi.org/10.3390/ai3030038

Behrendt, F., Bengs, M., Bhattacharya, D., Krüger, J., Opfer, R., & Schlaefer, A. (2023). A systematic approach to deep learning-based nodule detection in chest radiographs. Scientific Reports, 13(1), Article 1. https://doi.org/10.1038/s41598-023-37270-2

Bhattacharjee, A., Rabea, S., Bhattacharjee, A., Elkaeed, E. B., Murugan, R., Selim, H. M. R. M., Sahu, R. K., Shazly, G. A., & Salem Bekhit, M. M. (2023). A multi-class deep learning model for early lung cancer and chronic kidney disease detection using computed tomography images. Frontiers in Oncology, 13. https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2023.1193746

Bhinder, B., Gilvary, C., Madhukar, N. S., & Elemento, O. (2021). Artificial Intelligence in Cancer Research and Precision Medicine. Cancer Discovery, 11(4), 900-915. https://doi.org/10.1158/2159-8290.CD-21-0090

Bilal, A., Shafiq, M., Fang, F., Waqar, M., Ullah, I., Ghadi, Y. Y., Long, H., & Zeng, R. (2022). IGWO-IVNet3: DL-Based Automatic Diagnosis of Lung Nodules Using an Improved Gray Wolf Optimization and InceptionNet-V3. Sensors, 22(24), Article 24. https://doi.org/10.3390/s22249603

Blessie, A., & Ramesh, P. (2022). Novel Contiguous Cross Propagation Neural Network Built CAD for Lung Cancer. Computer Systems Science and Engineering, 44(2), 1467-1484. https://doi.org/10.32604/csse.2023.025399

Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R. L., Soerjomataram, I., & Jemal, A. (2024). Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 74(3), 229-263. https://doi.org/10.3322/caac.21834

Civit-Masot, J., Bañuls-Beaterio, A., Domínguez-Morales, M., Rivas-Pérez, M., Muñoz-Saavedra, L., & Rodríguez Corral, J. M. (2022). Non-small cell lung cancer diagnosis aid with histopathological images using Explainable Deep Learning techniques. Computer Methods and Programs in Biomedicine, 226, 107108. https://doi.org/10.1016/j.cmpb.2022.107108

Faria, N., Campelos, S., & Carvalho, V. (2023). A Novel Convolutional Neural Network Algorithm for Histopathological Lung Cancer Detection. Applied Sciences, 13(11), Article 11. https://doi.org/10.3390/app13116571

Huang, W., & Hu, L. (2019). Using a Noisy U-Net for Detecting Lung Nodule Candidates. IEEE Access, 7, 67905-67915. IEEE Access. https://doi.org/10.1109/ACCESS.2019.2918224

Huang, X., Lei, Q., Xie, T., Zhang, Y., Hu, Z., & Zhou, Q. (2020). Deep Transfer Convolutional Neural Network and Extreme Learning Machine for lung nodule diagnosis on CT images. Knowledge-Based Systems, 204, 106230. https://doi.org/10.1016/j.knosys.2020.106230

Humayun, M., Sujatha, R., Almuayqil, S. N., & Jhanjhi, N. Z. (2022). A Transfer Learning Approach with a Convolutional Neural Network for the Classification of Lung Carcinoma. Healthcare, 10(6), Article 6. https://doi.org/10.3390/healthcare10061058

Ibrahim, D. M., Elshennawy, N. M., & Sarhan, A. M. (2021). Deep-chest: Multi-classification deep learning model for diagnosing COVID-19, pneumonia, and lung cancer chest diseases. Computers in Biology and Medicine, 132, 104348. https://doi.org/10.1016/j.compbiomed.2021.104348

Jena, S. R., George, S. T., & Ponraj, D. N. (2021). Lung cancer detection and classification with DGMM-RBCNN technique. Neural Computing and Applications, 33(22), 15601-15617. https://doi.org/10.1007/s00521-021-06182-5

Kim, G., Moon, S., & Choi, J.-H. (2022). Deep Learning with Multimodal Integration for Predicting Recurrence in Patients with Non-Small Cell Lung Cancer. Sensors, 22(17), Article 17. https://doi.org/10.3390/s22176594

Kitchenham, B. and Charters, S. (2007) Guidelines for Performing Systematic Literature Reviews in Software Engineering, Technical Report EBSE 2007-001, Keele University and Durham University Joint Report.

Lalitha, S. (2021). An automated lung cancer detection system based on machine learning algorithm. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 40(4), 6355-6364. https://doi.org/10.3233/JIFS-189476

Lanjewar, M. G., Panchbhai, K. G., & Charanarur, P. (2023). Lung cancer detection from CT scans using modified DenseNet with feature selection methods and ML classifiers. Expert Systems with Applications, 224, 119961. https://doi.org/10.1016/j.eswa.2023.119961

Liu, M., Li, L., Wang, H., Guo, X., Liu, Y., Li, Y., Song, K., Shao, Y., Wu, F., Zhang, J., Sun, N., Zhang, T., & Luan, L. (2023). A multilayer perceptron-based model applied to histopathology image classification of lung adenocarcinoma subtypes. Frontiers in Oncology, 13, 1172234. https://doi.org/10.3389/fonc.2023.1172234

Maleki, N., & Niaki, S. T. A. (2023). An intelligent algorithm for lung cancer diagnosis using extracted features from Computerized Tomography images. Healthcare Analytics, 3, 100150. https://doi.org/10.1016/j.health.2023.100150

Masud, M., Sikder, N., Nahid, A.-A., Bairagi, A. K., & AlZain, M. A. (2021). A Machine Learning Approach to Diagnosing Lung and Colon Cancer Using a Deep Learning-Based Classification Framework. Sensors, 21(3), Article 3. https://doi.org/10.3390/s21030748

Mendoza, J., & Pedrini, H. (2020). Detection and classification of lung nodules in chest X-ray images using deep convolutional neural networks. Computational Intelligence, 36(2), 370-401. https://doi.org/10.1111/coin.12241

Mohamed, T. I. A., Oyelade, O. N., & Ezugwu, A. E. (2023). Automatic detection and classification of lung cancer CT scans based on deep learning and ebola optimization search algorithm. PLOS ONE, 18(8), e0285796. https://doi.org/10.1371/journal.pone.0285796

Moragheb, M. A., Badie, A., & Noshad, A. (2022). An Effective Approach for Automated Lung Node Detection using CT Scans. Journal of Biomedical Physics & Engineering, 12(4), 377-386. https://doi.org/10.31661/jbpe.v0i0.2110-1412

Mothkur, R., & B. N, Dr. V. (2022). A Robust Approach for Segmentation and Classification of Lung Cancer using Marker Controlled Watershed Method and Deep Hybrid Learning. Indian Journal of Computer Science and Engineering, 13(5), 1366-1377. https://doi.org/10.21817/indjcse/2022/v13i5/221305003

Nanglia, P., Kumar, S., Mahajan, A. N., Singh, P., & Rathee, D. (2021). A hybrid algorithm for lung cancer classification using SVM and Neural Networks. ICT Express, 7(3), 335-341. https://doi.org/10.1016/j.icte.2020.06.007

Naseer, I., Akram, S., Masood, T., Rashid, M., & Jaffar, A. (2023). Lung Cancer Classification Using Modified U-Net Based Lobe Segmentation and Nodule Detection. IEEE Access, 11, 60279-60291. IEEE Access. https://doi.org/10.1109/ACCESS.2023.3285821

Nooreldeen, R., & Bach, H. (2021). Current and Future Development in Lung Cancer Diagnosis. International Journal of Molecular Sciences, 22(16), Article 16. https://doi.org/10.3390/ijms22168661

Ozdemir, O., Russell, R. L., & Berlin, A. A. (2020). A 3D Probabilistic Deep Learning System for Detection and Diagnosis of Lung Cancer Using Low-Dose CT Scans. IEEE Transactions on Medical Imaging, 39(5), 1419-1429. IEEE Transactions on Medical Imaging. https://doi.org/10.1109/TMI.2019.2947595

Raju, M. S. N., & Rao, B. S. (2022). Classification of Colon and Lung Cancer Through Analysis of Histopathology Images Using Deep Learning Models. Ingénierie des systèmes d information, 27(6), 967-971. https://doi.org/10.18280/isi.270613

Raza, R., Zulfiqar, F., Khan, M. O., Arif, M., Alvi, A., Iftikhar, M. A., & Alam, T. (2023). Lung-EffNet: Lung cancer classification using EfficientNet from CT-scan images. Engineering Applications of Artificial Intelligence, 126, 106902. https://doi.org/10.1016/j.engappai.2023.106902

Saied, M., Raafat, M., Yehia, S., & Khalil, M. M. (2023). Efficient pulmonary nodules classification using radiomics and different artificial intelligence strategies. Insights into Imaging, 14(1), 91. https://doi.org/10.1186/s13244-023-01441-6

Saleem, M. A., Thien Le, N., Asdornwised, W., Chaitusaney, S., Javeed, A., & Benjapolakul, W. (2023). Sooty Tern Optimization Algorithm-Based Deep Learning Model for Diagnosing NSCLC Tumours. Sensors, 23(4), Article 4. https://doi.org/10.3390/s23042147

Saleh, A. Y., & Chin, C. K. (2023). Development of hybrid convolutional neural network and autoregressive integrated moving average on computed tomography image classification. IAES International Journal of Artificial Intelligence, 12(4), 1864-1872. Scopus. https://doi.org/10.11591/ijai.v12.i4.pp1864-1872

Shafi, I., Din, S., Khan, A., Díez, I. D. L. T., Casanova, R. del J. P., Pifarre, K. T., & Ashraf, I. (2022). An Effective Method for Lung Cancer Diagnosis from CT Scan Using Deep Learning-Based Support Vector Network. Cancers, 14(21), Article 21. https://doi.org/10.3390/cancers14215457

Shah, A. A., Malik, H. A. M., Muhammad, A., Alourani, A., & Butt, Z. A. (2023). Deep learning ensemble 2D CNN approach towards the detection of lung cancer. Scientific Reports, 13(1), Article 1. https://doi.org/10.1038/s41598-023-29656-z

Shakeel, P. M., Burhanuddin, M. A., & Desa, M. I. (2019). Lung cancer detection from CT image using improved profuse clustering and deep learning instantaneously trained neural networks. Measurement, 145, 702-712. https://doi.org/10.1016/j.measurement.2019.05.027

Shanid, M., & Anitha, A. (2020). Lung Cancer Detection from Ct Images Using Salp-Elephant Optimization-Based Deep Learning. BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS, 32(1), 2050001. https://doi.org/10.4015/S1016237220500015

Sori, W. J., Feng, J., & Liu, S. (2019). Multi-path convolutional neural network for lung cancer detection. Multidimensional Systems and Signal Processing, 30(4), 1749-1768. https://doi.org/10.1007/s11045-018-0626-9

Sousa, J., Pereira, T., Silva, F., Silva, M. C., Vilares, A. T., Cunha, A., & Oliveira, H. P. (2022). Lung Segmentation in CT Images: A Residual U-Net Approach on a Cross-Cohort Dataset. Applied Sciences, 12(4), Article 4. https://doi.org/10.3390/app12041959

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71(3), 209-249. https://doi.org/10.3322/caac.21660

Talukder, Md. A., Islam, Md. M., Uddin, M. A., Akhter, A., Hasan, K. F., & Moni, M. A. (2022). Machine learning-based lung and colon cancer detection using deep feature extraction and ensemble learning. Expert Systems with Applications, 205, 117695. https://doi.org/10.1016/j.eswa.2022.117695

Tang, T., Li, F., Jiang, M., Xia, X., Zhang, R., & Lin, K. (2022). Improved Complementary Pulmonary Nodule Segmentation Model Based on Multi-Feature Fusion. Entropy, 24(12), Article 12. https://doi.org/10.3390/e24121755

Tiwari, L., Raja, R., Awasthi, V., Miri, R., Sinha, G. R., Alkinani, M. H., & Polat, K. (2021). Detection of lung nodule and cancer using novel Mask-3 FCM and TWEDLNN algorithms. Measurement, 172, 108882. https://doi.org/10.1016/j.measurement.2020.108882

V. R., N., & Chandra S. S., V. (2023). ExtRanFS: An Automated Lung Cancer Malignancy Detection System Using Extremely Randomized Feature Selector. Diagnostics, 13(13), 2206. https://doi.org/10.3390/diagnostics13132206

Wadekar, S., & Singh, D. K. (2023). A modified convolutional neural network framework for categorizing lung cell histopathological image based on residual network. Healthcare Analytics, 4, 100224. https://doi.org/10.1016/j.health.2023.100224

Wankhade, S., & S., V. (2023). A novel hybrid deep learning method for early detection of lung cancer using neural networks. Healthcare Analytics, 3, 100195. https://doi.org/10.1016/j.health.2023.100195

Yan, C., & Razmjooy, N. (2023). Optimal lung cancer detection based on CNN optimized and improved Snake optimization algorithm. Biomedical Signal Processing and Control, 86, 105319. https://doi.org/10.1016/j.bspc.2023.105319

Yu, H., Li, J., Zhang, L., Cao, Y., Yu, X., & Sun, J. (2021). Design of lung nodules segmentation and recognition algorithm based on deep learning. BMC Bioinformatics, 22(Suppl 5), 314. https://doi.org/10.1186/s12859-021-04234-0

Yu, K.-H., Lee, T.-L. M., Yen, M.-H., Kou, S. C., Rosen, B., Chiang, J.-H., & Kohane, I. S. (2020). Reproducible Machine Learning Methods for Lung Cancer Detection Using Computed Tomography Images: Algorithm Development and Validation. Journal of Medical Internet Research, 22(8), e16709. https://doi.org/10.2196/16709

Descargas

Publicado

2024-11-06

Número

Sección

Artículos

Categorías