Environment Model Configuration from Low-quality Videosment Model Configuration from Low-quality Videos
DOI. 10.54798/IOMB8379
Palabras clave:
Blind people assistance, Video processing, Object detection, Data Mining, Environment configuration.Resumen
This article aims to describe main findings on a prototype for assisting blind people. To improve its functioning the main approach is to build a model dynamically using Intelligent System and Machine Learning. After several partial models the prototype is able to detect and recognize the outline of a user environment, specifically to determine the spatial organization of multiple objects. This paper encompasses a comprehensive set of activities aimed at evaluating and enhancing a system with efficient metrics for feature assessments upon, video , image segmentation, and data mining on the fly. Additionally, this work covers automatic image tagging, and a set of risk rules. It also evaluates and depicts specific techniques and approaches to be applied to create models with high pattern-detection efficiency. The algorithm used is required to be light and quick, in order to be used in standard cell phones to assist blind people and provide meaningful information to the user. As part of the current paper a small statistical analysis is also performed.
Citas
Park, J.S., De Luise, D.L., Hemanth, D.J., Pérez, J. (2018). Environment Description for Blind People. In: Balas, V., Jain, L., Balas, M. (eds) Soft Computing Applications. SOFA 2016. Advances in Intelligent Systems and Computing, vol 633. Springer, Cham. https://doi.org/10.1007/978-3-319-62521-8_30
Bryant Penrose, R. (2023). Anticipating Potential Barriers for Students With Visual Impairments When Using a Web-Based Instructional Platform. Journal of Visual Impairment & Blindness. Tools of the Blind and Visually Impaired. Volume 117 Issue 5
Curing Retinal Blindness Foundation (2023). Tools of the Blind and Visually Impaired. https://www.crb1.org/for-families/resources/tools
Blasch, B. B., Long, R. G., and Griffin, Shirley N. Results of a National Survey of Electronic Travel Aid Use. Journal of Visual Impairment and Blindness, November, 1989, v. 33, n 9, pp 449-453.
WEBAIM (2021) Screen Reader User Survey #9 Results. Web accessibility in mind. Institute for Disability Research. Utah State University. Last updated: Jun 30, 2021. https://webaim.org/projects/screenreadersurvey9/
The Lancet Global Health Commission on Global Eye Health: vision beyond 2020. Crossref DOI link: https://doi.org/10.1016/S2214-109X(20)30488-5
Cleveland Clinic (2022) Blindness. https://my.clevelandclinic.org/health/diseases/24446-blindness
Understanding Experiences of Blind Individuals in Outdoor Nature. M. Bandukda · A. Singh · N. Bianchi-Berthouze · C. Holloway. DOI: 10.1145/3290607.3313008. Conference: ACM CHI'19 · 2019
A Virtual Environment for People Who Are Blind – A Usability Study. O. Lahav, D W Schloerb, S Kumar, M A Srinivasan. J Assist Technol. 2012; 6(1). doi:10.1108/17549451211214346. 2016
Challenges That Blind People Face. Written by Kate Beck 18 December, 2018. HealthFully (https://healthfully.com/).Leaf Group Ltd.
Insight (Lawrence). Author manuscript; available in PMC 2018 Dec 28. Published in final edited form as: Insight (Lawrence). 2011 Spring; 4(2): 83–91.
Front Psychol. 2022; 13: 897098. Published online 2022 Oct 28. doi: 10.3389/fpsyg.2022.897098
Rasouli Kahaki, Z., Karimi, M., Taherian, M. et al. (2023) Development and validation of a white cane use perceived advantages and disadvantages (WCPAD) questionnaire. BMC Psychol 11, 253. https://doi.org/10.1186/s40359-023-01282-4
Holzer, R. (2019) OpenCV tutorial Documentation. Release 2019. pp 125
Park, N. et al. (2021). Multi-neural Networks Object Identification. In: Balas, V., Jain, L., Balas, M., Shahbazova, S. (eds) Soft Computing Applications. SOFA 2018. Advances in Intelligent Systems and Computing, vol 1222. Springer, Cham. https://doi.org/10.1007/978-3-030-52190-5_13
López De Luise, D., Park Jin , S., Hoferek , S., Avila Lautaro, N., Benitez Micaela, A., Bordon Sbardella, F. R., Fantín, R. I., Machado, G. E., Mencia Aramis, O., Ríos, A. A., Luis, E. L., & Riveros, N. E. (2023). Detección Automática de Objetos como asistencia a Personas Invidentes. Revista Abierta De Informática Aplicada, 7(1), 37–50. https://doi.org/10.59471/raia202356
Furundarena, F., López De Luise, D., Veiga, M. (2022) Computational Creativity through AI modeling. CASE 2022
Komatsu, T., Saito, T. (2006). Color Transformation and Interpolation for Direct Color Imaging with a Color Filter Array. International Conference on Image Processing, pp. 3301-3304, doi: 10.1109/ICIP.2006.312878
Imtiaz, M. S., Wahid, K. A. (2014) Image enhancement and space-variant color reproduction method for endoscopic images using adaptive sigmoid function. In 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3905-3908, doi: 10.1109/EMBC.2014.6944477
Wen, Y. W., Ng, M. K., Huang, Y. M. (2008) Efficient Total Variation Minimization Methods for Color Image Restoration. In IEEE Transactions on Image Processing, vol. 17, no. 11, pp. 2081-2088, doi: 10.1109/TIP.2008.2003406
Kuo, T., Hsieh, C., Lo, Y. (2013) Depth map estimation from a single video sequence. In IEEE International Symposium on Consumer Electronics, pp. 103-104, doi: 10.1109/ISCE.2013.6570130
Yakubenko, M. A., Gashnikov, M. V. (2023) Entropy Modeling in Video Compression Based on Machine Learning. In IX International Conference on Information Technology and Nanotechnology (ITNT), Samara, Russian Federation, pp. 1-4, doi: 10.1109/ITNT57377.2023.10139143
De Siva, N. H. T. M., Rupasingha, R. A. H. M. (2023) Classifying YouTube Videos Based on Their Quality: A Comparative Study of Seven Machine Learning Algorithms. In IEEE 17th International Conference on Industrial and Information Systems (ICIIS), Peradeniya, Sri Lanka, pp. 251-256, doi: 10.1109/ICIIS58898.2023.10253580
Russell, B. C., Torralba, A., Murphy, K. P., Freeman, W. T. (2005). LabelMe: a database and web-based tool for image annotation. MIT AI LAB MEMO AIM-2005-025, SEPTEMBER, 2005
Upulie, H. D. I., Kuganandamurthy, L. (2021). Real-Time Object Detection Using YOLO: A Review. DOI: 10.13140/RG.2.2.24367.66723
labelme2yolo 0.1.3 (2023) Project Description. October 2023 release. https://pypi.org/project/labelme2yolo
Ren, S., He, K., Girshick, R., Sun, J. (2016). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. Cornell University. Doi: https://arxiv.org/abs/1506.01497
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., Berg, A.C. (2016). SSD: Single Shot MultiBox Detector. Doi: https://arxiv.org/abs/1512.02325
Pytorch Foundation, (2016), PyTorch, https://pytorch.org/
Ultralytics (2023), https://github.com/ultralytics/ultralytics
Jeffrey A. Clark. Pillow 10.3.0 (2024). https://pillow.readthedocs.io/en/stable/
Publicado
Licencia
Derechos de autor 2025 Revista Cientifica Emprendimiento Científico Tecnologico

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.